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2. Frequentism and Birnbaum�s Theorem
- frequentism in statistics means that any statistical procedure must be
justi�ed based on its properties under repeated sampling such as
mean-squared error for estimates, power for tests, expected size of
con�dence sets, etc.

- repeated sampling means considering data sets x1, x2, . . . i.i.d. fθ and the
average performance of the procedure for each θ 2 Θ
- so if one procedure does better with respect to a particular repeated
sampling criterion than another, uniformly in θ, then it is preferred

- there is currently no frequentist theory that produces answers to E and H
for many meaningful problems and, in some instances, the answers
provided are somewhat questionable

- the criteria used to judge a procedure are typically loss-based and loss
functions (optimality criteria) need to be chosen and are not falsi�able via
the data which is contrary to the goal of objectivity

- for example, in an estimation problem should we use squared error,
absolute error or something else?

- often the choice is based on mathematical convenience and convention
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Birnbaum, A. (1962) On the foundations of statistical inference.
JASA, 57, 298, 269-306.

- attempted to characterize what are good frequentist procedures based on
commonly used, partial characterizations of statistical evidence and
produced a surprising result

- there are two basic principles of frequentism which most accept as
sensible: the su¢ ciency S and the conditionality C principles
- furthermore, there is the non-frequentist likelihood principle L
- Birnbaum apparently proved that, if you accept S and C, then you must
accept L
- this is paradoxical because S and C allow for frequentism but L doesn�t
- Bayesianism conforms to L, so Birnbaum�s Theorem is sometimes cited
as support for Bayesian inference

- we examine this result more closely

Evans, M. (2013) What does the proof of Birnbaum�s theorem
prove? Electronic J. of Statistics, 7, 2645-2655.
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- wlog we simplify to the context where X is �nite

- let IΘ = denote the set of all inference bases based on such X with
�xed Θ (easily generalized to allow for reparameterizations)

- a relation R on a set I is a subset of I � I so, if (I1, I2) 2 R, then I1
and I2 are related

- a relation R on I is an equivalence relation if it satis�es
(i) (re�exive) (I , I ) 2 R for all I 2 IΘ
(ii) (symmetric) if (I1, I2) 2 R then (I2, I1) 2 R
(iii) (transitive) if (I1, I2) 2 R and (I2, I3) 2 R then (I1, I3) 2 R
- an eq. rel. on I partitions I into equivalence classes
- a statistical principle is a relation on IΘ such that two related inference
bases contain the same amount of evidence concerning the true value of θ
and so inferences should be the same

- to be a valid characterization of evidence the principle should be an
equivalence relation
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- if a relation R on I is not an eq .rel., various equivalence relations can
be obtained from it

- let R� = fR� : R� � R,R� is an eq. rel. and if R� � R�� � R with R��
an eq. rel. then R� = R��g and since the intersection of eq. rel.�s on I is
an eq. rel. then Rlam = \R�2RR� is an eq. rel. called the laminal eq. rel.
induced by R (the biggest eq. rel. within R consistent with all the others)

- also, let R� = fR� : R � R�,R� is an eq. rel.g and de�ne
R̄ = \R �2RR� the smallest eq. rel. containing R
Lemma (chaining) If R is a re�exive relation on I , then R̄ = f((I , I 0) : 9n
and I1, . . . , In 2 I s.t. I1 = I , In = I 0 and (Ii , Ii+1) 2 R or (Ii+1, Ii ) 2 Rg.
- do we have to accept the elements of R̄ as equivalent?

Example
- I = f2, 3, 4, . . .g and (i , j) 2 R when i and j have a common factor
bigger than 1 so re�exive and symmetric but (6, 3) 2 R and (2, 6) 2 R
yet (2, 3) /2 R so not transitive
- and R̄ = I � I since for any (i , j), then (i , ij) 2 R and (ij , j) 2 R and
R̄ expresses nothing meaningful
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likelihood principle

Likelihood Principle (L)
(I1, I2) 2 L whenever the likelihood function based on I1 equals
the likelihood function based on I2.

- the likelihood function is any positive multiple of the density at the
observed data considered as a function of θ, immediately gives

Lemma L is an eq. rel. on IΘ

- so L is a potentially valid characterization of statistical evidence but
Example Irrelevancy of stopping rules.
- x � binomial(n, θ), θ 2 (0, 1] observe x = k, gives
L(θ j x) = θk (1� θ)n�k (sample for n tosses)

- y � negative-binomial(k, θ), θ 2 (0, 1] and observe y = n� k so
L(θ j y) = θk (1� θ)n�k (sample until k heads)

- should inferences be the same?
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su¢ ciency principle
- recall that, for model ffθ : θ 2 Θg, a statistic T (any function de�ned on
X ) is su¢ cient if the conditional distribution of the data x given the value
T (x) is independent of θ, T is minimal su¢ cient if for any su¢ cient
statistic T 0 there is a function hT ,T 0 such that T (x) = hT ,T 0(T 0(x)) and
obviously a 1-1 function of a mss is a mss

- let [x ] = fz 2 X : fθ(x) = cfθ(z) for some c > 0 and every θ 2 Θg so
[x ] is the eq. class containing x induced by the eq. rel. on X that says two
data sets are equivalent if they give rise to the same likelihood function

Lemma [�] is a minimal su¢ cient statistic for ffθ : θ 2 Θg.

Su¢ ciency Principle (S)
If Ti is a mss for the model of Ii = (ffiθ : θ 2 Θg, xi ) for i = 1, 2
and there is a 1-1 function h such that T1 = h(T2) with
T1(x1) = h(T2(x2)), then (I1, I2) 2 S.
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- the underlying idea is that, because the conditional distribution given a
su¢ cient statistic does not involve θ, reducing the data to the value of the
su¢ cient statistic, so the information locating x within

T�1fT (x)g = fz : T (z) = T (x)g

is discarded, does not lose any evidence concerning the true value of θ and
we want to make the maximum reduction in the data to the value of a mss

Lemma S is an eq. rel. on IΘ and S � L.
Proof: The eq. rel. part is obvious. If (I1, I2) 2 S, then by the
factorization theorem fiθ(xi ) = k(xi )gTi θ(Ti (xi )) where gTi θ is the density
of the mss Ti for ffiθ : θ 2 Θg. Also, gT1θ(T1(x1)) = gT2θ(h(T2(x2))) so
f1θ(x1) = cgT2θ(h(T2(x2))) = c 0f2θ(x2) which implies (I1, I2) 2 L.
- so S is a potentially valid characterization of statistical evidence

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html ()The Measurement of Statistical Evidence Lecture 3 - part 2 2021 8 / 12



conditionality principle
Example Two measuring instruments.
- a physicist wants to measure a voltage and picks up a voltmeter

- there are two voltmeters available and, based on experience, it is known
that a measurement from voltmeter 1 gives values distributed N(µ, σ21)
and voltmeter 2 gives values distributed N(µ, σ22) where µ is the unknown
voltage and σ21 >> σ22 are both known

- the stores manager tosses a fair coin giving the physicist voltmeter 1 if
heads is obtained and voltmeter 2 otherwise and suppose voltmeter 2 is
provided with the physicist knowing this

- voltages x = (x1, . . . , xn) were obtained and x̄ is the estimate but how to
quantify the accuracy of this estimate, namely, the conditional, given the
voltmeter used, 0.95-Cl x̄ � (σ2/

p
n)z0.025 or the longer unconditional

(approx.) 0.95-CI x̄ � (
q
(σ21 + σ22)/2n)z0.025

- most would say the conditional interval is the right one

- note - the distribution of the choice of the voltmeter does not involve the
unknown µ
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- a statistic U is ancillary for the model ffθ : θ 2 Θg if the distribution of
U(x) is independent of θ

Conditionality Principle (C) If U is an ancillary for the model in
I = (ffθ : θ 2 Θg, x), then (I , IU ) 2 C and (IU , I ) 2 C where
IU = (ffθ(� jU(x)) : θ 2 Θg, x) and fθ(� jU(x)) is the
conditional density of the data given U(x).

- the basic idea is that we want to remove all variation that does not
depend on θ so appropriate accuracy assessments can be made

Lemma C is re�exive and symmetric but not transitive and C � L.
- so C is not a proper characterization of statistical evidence
- the basic idea to the proof is that there can be many ancillaries for a
model but if U1 and U2 are ancillaries it is not the case in general that
(U1,U2) is ancillary

- in particular there is no maximal ancillary U (every other ancillary can be
written as a function of U)
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Birnbaum�s Theorem If you accept S and C as proper characterizations
of statistical evidence, then you must accept L as a proper characterization
of statistical evidence and frequentism is not relevant.
Proof: Suppose that (I1, I2) 2 L. Construct a new inference base
I = (M, y) from I1 and I2 as follows. Let M be given by
XM = (f1g � XM1) [ (f2g � XM2),

fM ,θ(1, x) =
�
(1/2)fM1,θ(x) when x 2 XM1

0 otherwise,

fM ,θ(2, x) =
�
(1/2)fM2,θ(x) when x 2 XM2

0 otherwise.

Then

T (i , x) =
�

(i , x) when x /2 fx1, x2g
fx1, x2g otherwise

is su¢ cient for M and so ((M, (1, x1)), (M, (2, x2))) 2 S. Also,
U(i , x) = i is ancillary for M and thus

((M, (1, x1)), (M1, x1)) 2 C , ((M, (2, x2)), (M2, x2)) 2 C .
This completes the "proof".

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html ()The Measurement of Statistical Evidence Lecture 3 - part 2 2021 11 / 12



- but what this actually proves, using the chaining argument, is the
following

Lemma S[C= L
- namely, the smallest eq. rel. containing S[C is L (and note S[C � L
is not an eq. rel.)

- so we do not have to accept the additional equivalences induced in S[C
- Evans, Fraser and Monette (1986) prove

Lemma C= L.
- C is a signi�cant problem for frequentism, can it be resolved? mostly just
ignored

- note C is not a problem for Bayes because in that formulation we
condition on all the data, not just ancillaries

- also ancillary statistics have a role to play in model checking and
checking for prior-data con�ict
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